# KernelFunctionsFilters

Uppdaterad
Library "KernelFunctionsFilters"
This library provides filters for non-repainting kernel functions for Nadaraya-Watson estimator implementations made by @jdehorty. Filters include a smoothing formula and zero lag formula. You can find examples in the code. For more information check out the original library KernelFunctions.

rationalQuadratic(_src, _lookback, _relativeWeight, startAtBar, _filter)
Parameters:
_src (float)
_lookback (simple int)
_relativeWeight (simple float)
startAtBar (simple int)
_filter (simple string)

gaussian(_src, _lookback, startAtBar, _filter)
Parameters:
_src (float)
_lookback (simple int)
startAtBar (simple int)
_filter (simple string)

periodic(_src, _lookback, _period, startAtBar, _filter)
Parameters:
_src (float)
_lookback (simple int)
_period (simple int)
startAtBar (simple int)
_filter (simple string)

locallyPeriodic(_src, _lookback, _period, startAtBar, _filter)
Parameters:
_src (float)
_lookback (simple int)
_period (simple int)
startAtBar (simple int)
_filter (simple string)

j(line1, line2)
Parameters:
line1 (float)
line2 (float)
Versionsinformation:
v2
Examples of usage:
line1 = rationalQuadratic(close, 8, 1, 25,"No Filter")
line2 = gaussian(close, 16, 25,"Smooth")
line3 = periodic(close, 8, 100, 25,"Zero Lag")

Updated:
rationalQuadratic(_src, _lookback, _relativeWeight, startAtBar, _filter)
Rational Quadratic Kernel - An infinite sum of Gaussian Kernels of different length scales.
Parameters:
_src (float): The source series.
_lookback (simple int): The number of bars used for the estimation. This is a sliding value that represents the most recent historical bars.
_relativeWeight (simple float): Relative weighting of time frames. Smaller values resut in a more stretched out curve and larger values will result in a more wiggly curve. As this value approaches zero, the longer time frames will exert more influence on the estimation. As this value approaches infinity, the behavior of the Rational Quadratic Kernel will become identical to the Gaussian kernel.
startAtBar (simple int): Bar index on which to start regression. The first bars of a chart are often highly volatile, and omission of these initial bars often leads to a better overall fit.
_filter (simple string): The filter used on formula. Choice of "No Filter", "Smooth" and "Zero Lag"
Returns: lineout The estimated values according to the Rational Quadratic Kernel.

gaussian(_src, _lookback, startAtBar, _filter)
Gaussian Kernel - A weighted average of the source series. The weights are determined by the Radial Basis Function (RBF).
Parameters:
_src (float): The source series.
_lookback (simple int): The number of bars used for the estimation. This is a sliding value that represents the most recent historical bars.
startAtBar (simple int): Bar index on which to start regression. The first bars of a chart are often highly volatile, and omission of these initial bars often leads to a better overall fit.
_filter (simple string): The filter used on formula. Choice of "No Filter", "Smooth" and "Zero Lag"
Returns: lineout The estimated values according to the Gaussian Kernel.

periodic(_src, _lookback, _period, startAtBar, _filter)
Periodic Kernel - The periodic kernel (derived by David Mackay) allows one to model functions which repeat themselves exactly.
Parameters:
_src (float): The source series.
_lookback (simple int): The number of bars used for the estimation. This is a sliding value that represents the most recent historical bars.
_period (simple int): The distance between repititions of the function.
startAtBar (simple int): Bar index on which to start regression. The first bars of a chart are often highly volatile, and omission of these initial bars often leads to a better overall fit.
_filter (simple string): The filter used on formula. Choice of "No Filter", "Smooth" and "Zero Lag"
Returns: lineout The estimated values according to the Periodic Kernel.

locallyPeriodic(_src, _lookback, _period, startAtBar, _filter)
Locally Periodic Kernel - The locally periodic kernel is a periodic function that slowly varies with time. It is the product of the Periodic Kernel and the Gaussian Kernel.
Parameters:
_src (float): The source series.
_lookback (simple int): The number of bars used for the estimation. This is a sliding value that represents the most recent historical bars.
_period (simple int): The distance between repititions of the function.
startAtBar (simple int): Bar index on which to start regression. The first bars of a chart are often highly volatile, and omission of these initial bars often leads to a better overall fit.
_filter (simple string): The filter used on formula. Choice of "No Filter", "Smooth" and "Zero Lag"
Returns: lineout The estimated values according to the Locally Periodic Kernel.

j(line1, line2)
J Line - Calculates the J line from K and D lines.
Parameters:
line1 (float): Source 1 (K)
line2 (float): Source 2 (D)
Returns: j The value of J

Pinebibliotek

I sann TradingView-anda har författaren publicerat denna Pine-kod som ett bibliotek med öppen källkod så att andra Pine-programmerare från vår community kan återanvända den. Hatten av för författaren! Du kan använda det här biblioteket privat eller i andra publikationer med öppen källkod, men återanvändning av den här koden i en publikation regleras av våra ordningsregler.

Frånsägelse av ansvar

Informationen och publikationerna är inte avsedda att vara, och utgör inte heller finansiella, investerings-, handels- eller andra typer av råd eller rekommendationer som tillhandahålls eller stöds av TradingView. Läs mer i Användarvillkoren.

Vill du använda det här biblioteket?

Kopiera följande rad och klistra in det i ditt skript.